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Figure 1: Comparison between a single-image method (a), our method (b), and a reference method [Haeberli and Akeley 1990] (c).

This document is intended to give further insight into our algorithm.
We show a comparison between our algorithm with very efficient
single-image methods, discuss the precision of our depth peeling,
as well as the memory consumption of our solution. Finally, we
address antialiasing to further improve the quality of output images.

1 Comparison with Single-Image Method

Methods used in game engines [Hammon 2007; Filion and Mc-
Naughton 2008] often sacrifice quality for efficiency. Usually, a
single color and depth texture undergoes a filtering process to ap-
proximate visibility and depth of field (DOF) effects. For filtering a
variation of mipmaps ensures high performance (e.g., 1-5 ms), even
on low-end platforms.

Because a standard blur would result in leaking from in-focus to
out-of-focus regions, the depth buffer is used to adapt the filtering
process. However, despite these measures, missing scene informa-
tion, especially in the presence of blurred foreground objects, can
make the approaches fail frequently. Convincing effects can only
be achieved for small blur kernels.

Both mentioned game techniques use non-physical lens models,
which makes a fair comparison difficult. In Figure 1, we tried to
match the blur level of the single-image approaches. Due to the
comparably small blur, our solution only needs 32 rays and 2 lay-
ers to produce a high-quality output. Nonetheless, even with these
settings, our method is still slower than a filtering solution. Our ap-
proach needs 14 ms per image (of which 3 ms are used by the ray-
tracing process) which is approximately twice as slow as [Filion and
McNaughton 2008] with 6 ms (5.4 ms for rendering, 0.6 for post-
processing). Nevertheless, artifacts appear in the postprocessing
methods, even for such a small blur radius. Our solution delivers
a convincing outcome and can treat larger blur kernels gracefully.
The same findings hold when comparing our method to another re-
cent mipmap-based solution [Lee et al. 2009b]. This method shares
the idea of the former approaches, but matches a physical lens be-
havior more closely.

Overall, the postprocessing methods can achieve reasonable results

for small kernels and achieve a very high performance. Nonethe-
less, they cannot recover hidden foreground surfaces (see the insets
in the figure) which can lead to artifacts and restrict achievable blur.

2 Precision of Our Depth Peeling

Our peeling method allows us to perform an artifact-free render-
ing in the sense that rays do not miss surfaces. Our approach ex-
ploits the ambiguity of an image- and geometry-based representa-
tion which implies that we can extend the single-pixel umbra by
half a pixel to each side without introducing artifacts. It is not pos-
sible to safely extend the umbra region further. Figure 2 illustrates
the result of an extended-umbra peeling beyond the valid extent.
These artifacts do not need to be pronounced and mostly appear at
depth continuities and, further, these artifacts can almost disappear
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Figure 2: Comparison of the raytraced images using different
thresholds for depth peeling. Our strategy, umbra culling (b) and its
extension to neighboring pixels (c) show that no rays are missing,
very close to the reference rendering (a). More extensions (e,d,f)
reveal leaking yet small amounts of rays around geometry edges.



when the rays are integrated to produce the final image. This makes
our approach relatively robust to this artifact and one could choose
more aggressive settings (e.g., 4 pixels), although we did not make
use of this possibility.

The major quality difference with respect to the accumulation
buffer method (that moves the camera) is that the peeling is done
only once. Hence, the surface sampling does not change for each
lens ray. In practice, the effect is somewhat comparable to anti-
aliasing, but the difference is much more subtle because the DOF
blur kernel hides potential differences.

3 Memory Consumption

Our memory consumption is comparably low. Let N be number of
layers, and S be the maximum footprint size of the lens rays. By
using 16-bit floating-point depth, the peeled layers consume N×
(3 (RGB) + 2 (depth)) = 5 bytes. The N-Buffers store the mini-
mum and maximum depths, hence, 4 bytes. Four layers share one
N-Buffer and we compute it from a downsampled version of the
original buffer.

Let M be the downsampling exponent for the N-Buffers; for ex-
ample, M =3 denotes an image of 1/8 of the original one on each
side. Then, the cost per original pixel is: 4 · N/4 · ((log2 S−M)/4M).
Finally, we rely on a mipmap to fill up the gap between N-Buffers
and original resolution resulting in 4 ·N/4 ·

∑M
1

1/4i. Thus, the total
cost is:
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For M=3, N=8, S=256, 32 MB are used for a 1024×768. In prac-
tice, N = 4 is sufficient for our approach, leading to 16 MB. Due
to the strong blur, [Lee et al. 2009a] need 16 layers for the scenes
depicted in the paper, resulting in 72 MB of memory. Further, their
slower ray-tracing performance usually implies the need for a sup-
plementary per-layer mipmapping. Consequently, the consumption
increases to 92 MB, while still not matching the quality of our 16
MB result.

4 Multisampled Antialiasing

Multisampled Antialiasing (MSAA) is an interesting feature, but
for DOF rendering only needed in the focused region. By clipping
the scene, one can render only the focused part with MSAA—the
remaining parts are blurred and MSAA is unnecessary. We can
then compute a coverage value in each pixel [Lee2009a] using the
alpha channel. During DOF rendering, we can look up the current
pixel’s corresponding MSAA pixel (there is only one because the
MSAA part is focused). It is then possible to integrate the blending
in our ray-tracing step and achieve an anti-aliased outcome. Fig-
ure 3 compares an image produced by this method to the image
rendered without MSAA.

(a) without MSAA (b) with MSAA

Figure 3: Comparison between images generated without MSAA
(a) and with MSAA (b).

5 Curvature of Field Using Geometric Lens

Finally, we demonstrate one more example using curvature of field,
not shown in the paper due to space limitations. In Figure 4, we
imitate the appearance of a photo shot by a lens like LensBabyTM.
The figure shows the illusion of still velocity generated by our geo-
metric lens model.

Figure 4: Curvature of field rendered by our method.
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